

Gnome 3.0
gnome-shell, clutter

and the future

Tomáš Bžatek <tbzatek@redhat.com>

GNOME Roadmap

● GNOME 2.0 released in 2002
● strong roadmap, 6 month release cycle
● GLib, GTK+ roadmap partially independent on

Gnome

● "community wants change"
● "Because of lack of excitement. Because of lack

of vision."

GNOME 3.0 Roadmap

● GNOME 2.30 == GNOME 3.0
● "if the QA Team feels a release should be

delayed, then it will be delayed."
● radical changes will start with GNOME 3.2

GNOME 3.0 Roadmap

● two new major features:
– gnome-shell

– Zeitgeist

● „both have already been in development for a
while, GNOME 3.0 will be less about "starting",
and more about "finishing". “

● possible GStreamer 1.0 and geolocalization
inclusion (with GeoClue and libchamplain)

● the goal is to let developers know the
preference so they start using new libraries

Library deprecation (codename Project Ridley)

● LibBonobo
● LibGnome
● LibGnomeUi
● LibGnomeCanvas
● LibArtLgpl
● LibGnomeVfs
● LibGnomePrint

● ESound
● Orbit
● LibGlade
● LibSexy
● LibEgg
● LibEel
● GtkGlExt

GLib 3, GTK 3 API changes

● 3.0 API mostly compatible with latest 2.x API

● no use of deprecated symbols -
G_DISABLE_DEPRECATED

● top-level header includes (e.g. glib.h, gobject.h,
gio.h) - G_DISABLE_SINGLE_INCLUDES

● use accessor functions instead direct access -
GSEAL_ENABLE

● possible fundamental changes in GObject

● lots of planned theming changes

● recently landed client-side windows, offscreen
rendering

GSettings

● configuration system, GConf replacement
(feature-wise)

● possibly different backends, dconf by default
● no more request serialization
● caching, in memory db, safe fsync
● fast reading, writing provided by separate

daemon
● still experimental

GObject-Introspection

● "will deeply change the way GNOME
development can be done"

● "Two level applications - C and <your favorite
runtime>"

– C for the core and performance-critical stuff

– higher level language for convenience (garbage
collector, memory allocations)

● automatically generating bindings in runtime

GObject-Introspection

● other nice features:
– API verification

– automatic documentation generator

● the plan is to let gobject-introspection generate
C bindings from D-Bus interface, creating
convenient C interface to D-Bus services

Clutter

● graphics library (scene-graph) for creating UI
● "for creation of fast, animated, visually bespoke

and impressive graphical interfaces"
● uses OpenGL to accelerate transforms etc.
● extensively used in Moblin GUI

Clutter

● ~70k lines codebase, 12+ k lines test suite
● 1600+ symbols in Clutter (99% documented)
● ~300 symbols in COGL (90% documented)
● 1200+ single commits
● 29 single authors, 14 non-Intel

● stable 1.0.2 release

Clutter

● written around GObject, can be integrated with GLib
mainloop, GTK+ - like API (no knowledge of OpenGL
required)

● actors (widgets), stage (window)

● actors can be:
– positioned in 3D space

– rotated around 3D axis

– sized

– scaled

– have opacity set

– clipped

gnome-shell

● panel and window manager replacement
● flexible workspaces
● overlay (dashboard) replaces „Start menu“

● gnome-panel will become obsolete, shipped
few releases for compatibility, then dropped

● work in progress, technology preview in Gnome
2.28

gnome-shell

● no taskbar
● application based:

– preventing multiple instances, but allowing
multiple windows from one process

– no persistency, ability to close apps normal way
(WM decoration or exit())

– switching based on applications, not on
windows (probably two different keystrokes
like in OS X...)

gnome-shell

● Mutter - moblin origin,
compositing WM, metacity
codebase

● C Core
● UI written in JavaScript

(GJs = the Mozilla
SpiderMonkey binding),
bridged using gobject-
introspection

gnome-shell JS

JavaScript Engine

gobject-introspection

Mutter

Metacity
Core

Clutter

OpenGL

Gnome-shell

● planned media and event notifications (IM, X
urgent hint)

● developer tools - Looking Glass
● integrated recording tool
● future Zeitgeist integration

Zeitgeist

● "Changing the way we access documents"
● "a tool for easy browsing and finding files on

your computer"
● some kind of "journal"
● logging your day-to-day activity
● navigation: using timelines, tags, bookmarks,

etc.
● daemon + GUI architecture

Zeitgeist use cases

● gnome-shell integration (Recent documents)
● parental control, killing apps (browsing porn

pages)
● real-time team workflow monitoring by

forwarding personal activities to others
● overview for monthly reports (for your boss)
● restoring a work state of a certain time. All

documents, which have been open

Thanks for attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

